

青岛科海生物科技有限公司

生物科技有限公 挺剂产品碳足迹报告 加州不为推開 NH HALL 委托方:青岛科润生物科技有限公司 光光方: 北京耀阳高技术

受托方: 北京耀阳高技术服务有限公司

ANE IN- TAREET

混构排出人

以供網点抗大流

		目录从拱棚品款	
执	行摘要	•••••••••••••••••••••••••••••••••••••••	1
1.	产品碳足迹介绍(CFP)介绍	J	2
2. 4.	2.1 科润生物及其产品介绍		
	4.3 硬挺剂生产的灵敏度分析	EXIV	9
5.	4.2 便挺剂的候足处按过程展示 4.3 硬挺剂生产的灵敏度分析 结论		

混解排化

n.H.E.II.- 不提供

执行摘要

本项目受青岛科润生物科技有限公司(以下简称"科润生物")委托,由北京耀阳高技术服务有限公司执行完成。研究的目的是以生命周期评价方法为基础,采用国际标准化组织(International Organization for Standardization,简称 ISO)编制的 ISO 14067标准和英国标准协会(British Standards Institution,简称 BSI的编制的 PAS 2050标准中规定的碳足迹核算方法,计算得到青岛科润生物科技有限公司生产的硬挺剂产品的碳足迹。

为了满足碳足迹第三方认证以及与各相关方沟通的需要,本报告的功能单位 定义为生产1吨硬挺剂。系统边界为"从摇篮到大门"类型,现场调查了科润生物 从原材料进厂到硬挺剂产品出厂的过程,电力、天然气、热轧带钢数据来源于数 据库。

硬挺剂产品的碳足迹分析见第四章。报告中对生产硬挺剂产品消耗的原辅料进行了分析、各生产工序对碳足迹贡献比例做了分析、对其生产的灵敏度进行了分析。从分析结果来看,科润生物生产 11 硬挺剂的碳足迹为 298.14 kgCO2e。硬挺剂生产生命周期过程中,可知原料获取过程对产品碳足迹贡献较大,占硬挺剂碳足迹的 86.83%,产品生产占 13.17%。

研究过程中,数据质量被认为是最重要的考虑因素之一。本次数据收集和选择的指导原则是,数据尽可能具有代表性,主要体现在生产商、技术、地域、时间等方面。现场调查了科润生物从原材料进厂到硬挺剂出厂的过程。大部分国内生产的大宗原材料的数据来源于 CLCD 数据库,此数据库由成都亿科环境科技有限公司自主开发,代表了中国基础工业平均水平,CLCD 数据库缺乏的原材料数据由 Ecoinvent 提供,中国的混合电力生产的数据来源于 CLCD 数据库。本研究选用的数据在国内外 LCA 研究中被高度认可和广泛应用。

此外,通过 eFootprint 软件实现了产品的生命周期建模、计算和结果分析,以保证数据和计算结果的可溯性和可再现性。

1

1. 产品碳足迹介绍(CFP)介绍

近年来,温室效应、气候变化已成为全球关注的焦点,"碳足迹"这个新的术语越来越广泛地为全世界所使用。碳足迹通常分为项目层面、组织层面、产品层面这三个层面。产品碳足迹(Carbon Footprint of Products,CFP)是指衡量某个产品在其生命周期各阶段的温室气体排放量总和,即从原材料开采、产品生产(或服务提供)、分销、使用到最终处置/再生利用等多个阶段的各种温室气体排放的累加。温室气体包括二氧化碳(CO₂)、甲烷(CH₄)、氧化亚氮(N₂O)、氢氟碳化物(HPC)和全氟化碳(PFC)等^[1]。碳足迹的计算结果为产品生命周期各种温室气体排放量的加权之和,用二氧化碳当量(CO₂e)表示,单位为 kg CO₂e或者 gCO₂e。全球变暖潜值(Gobal Warming Potential,简称 GWP),即各种温室气体的二氧化碳当量值,通常采用联合国政府间气候变化专家委员会(IPCC)提供的值,目前这套因子被全球范围广泛适用。

NH MINTER AND THE PARTY OF THE

产品碳足迹计算只包含一个完整生命周期评估(LCA)的温室气体的部分^[2]。基于LCA的评价方法,国际上已建立起多种碳足迹评估指南和要求,用于产品碳足迹认证,目前广泛使用的碳足迹评估标准有三种:①《PAS2050: 2011商品和服务在生命周期内的温室气体排放评价规范》,此标准是由英国标准协会(BSI)与碳信托公司(Carbon Trus)、英国食品和乡村事务部(Defra)联合发布,是国际上最早的、具有具体计算方法的标准,也是目前使用较多的产品碳足迹评价标准;②《温室气体核算体系:产品寿命周期核算与报告标准》,此标准是由世界资源研究所(World Resources Institute,简称WRI)和世界可持续发展工商理事会(World Business Council for Sustainable Development,简称WBCSD)发布的产品和供应链标准;③《ISO/TS 14067: 2013 温室气体——产品碳足迹——量化和信息交流的要求与指南》,此标准以PAS 2050为种子文件,由国际标准化组织(ISO)编制发布。产品碳足迹核算标准的出现目的是建立一个一致的、国际间认可的评估产品碳足迹的方法。

京共和一大樓牌。

2. 目标与范围定义

2.1 科润生物及其产品介绍

青岛科润生物科技有限公司,是一家生物技术研发、生产、销售为一体的综 合性高新技术企业。公司下设分织助剂、水处理助剂、皮革助剂三个事业部,主 要生产高新环保型的纺织、护染、水处理、皮革应用产品。公司秉承"用科技和 安全,绿色和环保、追求可持续发展"的企业发展战略,不吝广纳精英,注重持 续研发,致力技术创新,不断完善服务,成为同行业中的佼佼者。

上批从事纺织助剂、水处理助剂、皮革助剂生产实践多年的高级工 大批拥有博士、硕士、学士学位的公司技术骨干,带领公司的技术人员, 第产品的研发升级,提供了快速可靠的技术支持和质量保障。生产的硬挺剂、 曾厚剂、印花糊料、粘合剂、增稠剂、硅油、软片等后整理和印花系列产品,达 到行业领先水平。

公司拥有专利 34 项,国家级高新技术企业、企业信誉等级 AAA 级,中石化 入围目录企业、华电入围目录企业;公司通过 ISO9001:2015 质量管理体系认 证、ISO14001:2015 环境管理体系认证、ISO45001: 2018 职业健康安全管理体系 认证,并获得欧盟 ECO、GOTS 认证。

公司凭借先进严格的管理体系,完善优秀的服务理念,素质过硬的营销队伍 和良好如一的客户信誉、深获广大客户青睐。青岛科润生物科技有限公司秉 让世界因我们而有所不同"的企业精神,以心为尺,标榜新时代 身为椽,力挺"品质中国"新篇章!努力打造成为国际-

2.2 研究目的

研究的目的是核算科润生物生产的硬挺剂产品全生命周期过程的碳足迹, 方碳足迹认证提供详细信息和数据支持。

碳足迹核算是科润生物实现低碳、绿色发展的基础和关键,披露产品的碳足 迹是科润生物环境保护工作和社会责任的一部分,也是科润生物迈向国际市场的 重要一步。本项目的研究结果将为科润生物与硬挺剂产品的采购商和第三方的有 效沟通提供良好的途径,对促进产品全供应链的温室气体减排具有积极作用。

本项目研究结果的潜在沟通对象包括两个群体:一是科润生物内部管理人员 京共上小一大樓

W. W. Sillik X II. 及其他相关人员,二是企业外部利益相关方,如上游供应商、下游采购商、地方 政府和环境非政府组织等。

2.3 研究范围

以拱橋時期 根据本项目研究目的, 按照 PAS 2050^[3]和 ISO 14067^[4]标准的要求。确定本 系统边界、分配原则、取舍原则、影响评价方法 和数据质量要求等

2.3.1 功能单位

为方便系统中输入/输出的量化,功能单位被定义为生产 1t 硬挺剂。

		在这项研究中,产品的系统边界属	"从:	摇篮到大门"的类型,为了实现上述功	
	能单	位,硬挺剂的系统边界见下表:		AXX.	
\	表 1.2 包含和未包含在系统边界内的生产过程				
//-	7	包含的过程		表包含的过程	
WID!	✓	硬挺剂生产的生命周期过程包括:原	✓	资本设备的生产及维修	
		辅料接受——能源获取——生产	✓	产品的运输、销售和使用	
A.	✓	中国的电力、天然气、水、聚乙烯醇、水性硬挺剂(VEA 乳液)的生产	✓	产品回收、处置和废弃阶段	
		, 🔅			
			4		
		AND THE PROPERTY OF THE PARTY O			

2.3.3 取舍准则

本研究采用的取舍准则为:

各生产单元过程物料与产品的重量比小于 1%, 且上游数据不可得的物 料被忽略

NH MINTER THE

- 品的重量比小于 1%,且上游数据可得的物料 不被忽略
- 各生产单元过程物料与产品的重量比大于 1%,且上游数据不可得 料采用按化学成分近似替代
- 《白于上游的低价值物料,如矿渣、炉渣等

5所有原辅料和能源等消耗都关联了上游数据,部分消耗的上游数据采 替代的方式处理,因此无忽略的物料。

2.3.4 影响类型和评价方法

基于研究目标的定义,本研究只选择了全球变暖这一种影响类型,并对产品 生命周期的全球变暖潜值(GWP)进行了分析,因为 GWP 是用来量化产品碳足 迹的环境影响指标。

包括二氧化碳(CO2),甲烷(CH4), 氧化亚氮 (N_2O) ,四氟化碳 (CF_4) ,六氟乙烷 (C_2F_6) ,六氟化硫 (SF_6) ,氢 氟碳化物 (HFC) 和哈龙等。并且采用了 IPCC 第四次评估报告(2007年)提出的 方法来计算产品生产周期的 GWP 值。该方法基于 100 年时间范围内其他温室气 体与二氧化碳相比得到的相对辐射影响值,即特征化因子,此因子用来将其他温 室气体的排放量转化为 CO2 当量(CO2e)。例如,1kg 甲烷在 100 年内对全球变 暖的影响相当于 25kg 二氧化碳排放对全球变暖的影响, 因此以二氧化碳当量 甲烷的特征化因子就是 25kg CO2e^[6]。 Oze)为基础,

2.3.5 软件和数据库

本研究采用 eFootprint 软件系统,建立了硬挺剂产品生命周期模型,并计算 得到 LCA 结果。eFootprint 软件系统是由亿科环境科技有限公司研发的在线 LCA 分析软件,支持全生命周期过程分析,并内置了中国生命周期基础数据库 (CLCD)、欧盟 ELCD 数据库和瑞士的 Ecoinvent 数据库。

研究过程中用到的数据库,包括 CLCD 和 Ecoinvent 数据库,数据库中生产和处置过程数据都是"从摇篮到大门"的汇总数据,分别介绍如下:

中国生命周期基础数据库(CLCD)由成都亿科环境科技有限公司开发,是一个基于中国基础工业系统生命周期核心模型的行业平均数据库。CLCD数据库包括国内主要能源、交通运输和基础原材料的清单数据集,其中电力(包括火力发电和水力发电以及混合电力传输)和公路运输被本研究所采用。2009年,CLCD数据库研究被联合国环境规划署(UNEP)和联合环境毒理学与化学协会(SETAC)授予生命周期研究奖。

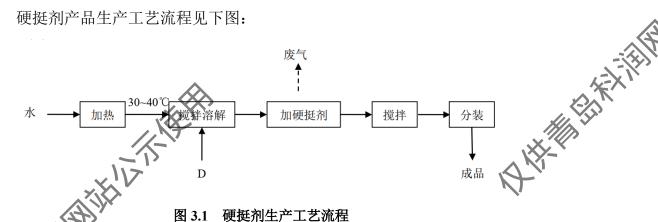
Ecoinvent 数据库由瑞士生命周期研究中心开发,数据主要来源于瑞士和西欧国家、该数据库包含约 4000 条的产品和服务的数据集,涉及能源,运输,建材,电子,化工,纸浆和纸张,废物处理和农业活动等。

http://www.Ecoinvent.org

2.3.6 数据质量要求

为满足数据质量要求,在本研究中主要考虑了以下几个方面:

- 数据准确性: 实景数据的可靠程度
- 数据代表性:生产商、技术、地域以及时间上的代表性,代表企业2022 年生产水平
- 模型一致性: 采用的方法和系统边界一致性的程度


为了满足上述要求,并确保计算结果的可靠性,在研究过程中首选来自生产商和供应商直接提供的初级数据,其中企业提供的经验数据取平均值,本研究在2023年2月进行企业现场数据的调查、收集和整理工作。当初级数据不可得时,尽量选择代表区域平均和特定技术条件下的次级数据,次级数据大部分选择来自CLCD数据库和Ecoinvent数据库;当目前数据库中没有完全一致的次级数据时,采用近似替代的方式选择CLCD数据库和Ecoinvent数据库中数据。数据库的数据是经严格审查,并广泛应用于国际上的LCA研究。各个数据集和数据质量将在第4章对每个过程介绍时详细说明。

现场过程温室气体的直接排放量为次级数据,全由标准或文献中的公式计算得到。

3. 过程描述

3.1 硬挺剂生产

硬挺剂产品生产工艺流程见下图:

NH MELITA XIV

工序数据清单见下表:

硬挺剂生产数据清单

表 3.1 硬挺剂生产数据清单

<u> </u>				1 CX 2
类型	清单名称	数量	单位	备注
产品	硬挺剂	1	吨	
能源消耗	电	30	kWh	CLCD-China-ECER 0.8.1
能源消耗	天然气	- 144	m³	CLCD-China-ECER 0.8.1
原料消耗	水	0.4	吨	CLCD-China-ECER 0.8.1
原料消耗	水性硬挺剂(VAE乳液)	0.35	吨	CLCD-China-ECER 0.8.1
原料消耗	聚乙烯醇	0.25	kg	CLCD-China-ECER 0.8.1
	$\mathcal{C}O_2$	8.36	kg	/
直接排放	CY14	0.00015	kg	~!\
	N_2O	0.00001492	kg	(1)

3.2 电力获取排放因子

料润生物位于山东省青岛市,本次调研科润生物产品生产用电来源于市政电 代表 2013 年全国电网平均排放因子。通过 eFootprint 计算获取 1kwh 电力排 放 0.93kg CO₂e。

3.3 天然气燃烧排放因子

天然气获取数据来源于 CLCD 数据库,代表 2013 年中国市场平均。通过 eFootprint 计算获取 1 立方米天然气会排放 2.786E-001kg CO₂e。

H-Marin Rank 天然气获取数据来源于 CLCD 数据库, 燃烧现场排放数据根据 IPCC2006 年 碳排放系数计算得到,具体核算过程见表。

表 3.2 中国 1 m³ 天然气燃烧温室气体排放数据

碳排放系数计算得到,具体核算	过程见表。	
表 3.2 中国 1 r	m³天然气燃烧温室气体排放数据	
温室气体	排放数量(kg)	
CO ₂	2.09E+00	EST.
CH ₄	3.75E-05	
N_2O	3.73E-06	
- XAV		-

4. 结果分析与讨论

数据用 eFootprint 计算得到生产 1t 硬挺剂的碳足迹为 298.14kgCO2e。

表 4.1 硬挺剂碳足迹

序号	物质	GWP/kgCO ₂ e)
1	水性硬挺剂(VAE 乳液)	(51.011
2	聚乙烯醇	107.865
3	水	0.165
4	电	27.9
5	天然气	2.56
6	直接排放	8.64
7	合计 4	298.14

4.1 硬挺剂的碳足迹按物质获

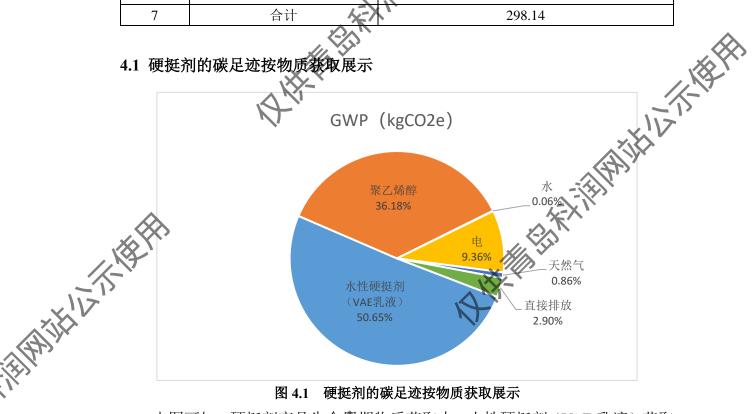


图 4.1 硬挺剂的碳足迹按物质获取展示

由图可知,硬挺剂产品生命周期物质获取中,水性硬挺剂(VAE 乳液)获取

H- Bill KXIII 对其 GWP 贡献最大占 50.65%; 其次为聚乙烯醇的获取占 36.18%; 再次为电的 消耗占9.36%,再次为天然气燃烧的直接排放占2.90%,其他物质的获取过程占 是持續

图 4.2 硬挺剂生命周期各过程碳足迹贡献比例

上图展示了硬挺剂产品生命周期各过程碳足迹贡献比例的情况,可知原料获 取过程对产品碳足迹贡献较大,占硬挺剂碳足迹的86.83%,产品生产占13.17%。

4.3 硬挺剂生产的灵敏度分析

硬挺剂生产生命周期过程,不同物料和能源等获取对硬挺剂碳足迹的贡献大 表。 表 4.2 硬挺剂生产不同过程碳足迹贡献识别 小见表。

过程	清单	对 GWP 贡献
原料获取	水性硬挺剂(VAE 乳液)	50.65%
原料获取	聚乙烯醇	36.18%
产品生产	水	0.06%
产品生产	电	9.36%
产品生产	天然气	0.86%
产品生产	直接排放	2.90%

5. 结论

通过以上分析可知,科润生物生产1t 硬挺剂的碳足迹为298.14kgCO2e。 硬挺剂生产生命周期过程中,水性硬挺剂(VAE 乳液)获取对其 GWP 贡献 9 最大占 50.65%; 其次为聚乙烯醇的获取占 36.18%; 再次为电的消耗占 9.36%, 再次为天然气燃烧的直接排放占 2.90%。为减小产品碳足迹,建议如下:

- 大宗物料物料就近采购:
- 以供為語樣 ● 对水性硬挺剂(VAE乳液)和聚乙烯醇的生产过程进现场调研,并计算 不同企业产品碳足速, 选择生产工艺更低碳的企业作为供应商, 建立企

以批准。

References:

[1].BSI, The Guide to PAS 2050: 2011, How to carbon footprint your products, identify hotspots and reduce emissions in your supply chain.

monization purposes, Berlin, December 2009.

[3].PAS 2050: 2011-Specification for the Assessment of the Life Cycle nhouse Gas Emissions of Goods and Services[J]. Department for Environment and Rural Affairs, & British Standards Institution. IT and communication of the product carbon footprint for international standardization and harmonization purposes, Berlin, December 2009.

Greenhouse Gas Emissions of Goods and Services[J]. Department for Environment, Food and Rural Affairs, & British Standards Institution: United Kingdom, 2011: 2-12.

Requirements and Guidelines for Quantification and Communication[J]. International Organization for Standardization, Geneva, Switzerland, 2013.

[5]. IPCC 2007: the Fourth Assessment Report of the Intergovernmental Panel on nate Change. Climate Change.

展榜其法人

以供應為抗熱性

n.H.E.I.T.I.T.I.E.F.F.